A base-paired structure in the avian sarcoma virus 5' leader is required for efficient encapsidation of RNA.

AUTOR(ES)
RESUMO

Selective encapsidation of avian sarcoma-leukosis virus genomic RNA within virions requires recognition of a cis-acting signal (termed psi) located in the 5' leader of the RNA between the primer binding site and the splice donor site. Computer analyses indicate the potential for numerous secondary structure interactions within this region, including alternative conformations with similar free energy levels. We have constructed mutations designed to disrupt and restore potential secondary structure interactions within psi to investigate the role of these structures in RNA packaging. To test for the ability of psi mutants to package a heterologous reporter gene into virions, chimeric constructs bearing avian sarcoma virus 5' sequences fused to lacZ were transiently cotransfected with a nonpackageable helper construct into chicken embryo fibroblasts. lacZ virions produced from cotransfected cells were used to infect new cultures of chicken embryo fibroblasts, and then an in situ assay for individual cells expressing lacZ was done. Results obtained with this assay were confirmed in direct analyses of isolated virion RNA by RNase protection assays. Two mutations, predicted to disrupt a potential stem structure forming between elements located at nucleotides 160 to 167 and 227 to 234, severely inhibited packaging when either element was mutated. A construct in which these mutations were combined to restore potential base pairing between the two elements displayed a partially restored packaging phenotype. These results strongly suggest that the structure, referred to as the O3 stem, is required for efficient encapsidation of avian sarcoma virus RNA. Site-directed mutagenesis of additional sequence elements located in the O3 loop reduced packaging as measured by the indirect assay, suggesting that these sequences may also be components of the encapsidation signal. The possible implications of the O3 stem structure with regard to translation of avian sarcoma-leukosis virus short upstream open reading frames are discussed.

Documentos Relacionados