A Chimeric Influenza Virus Expressing an Epitope of Outer Membrane Protein F of Pseudomonas aeruginosa Affords Protection against Challenge with P. aeruginosa in a Murine Model of Chronic Pulmonary Infection

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The ability of a chimeric influenza virus containing, within the antigenic B site of its hemagglutinin, an 11-amino-acid (AEGRAINRRVE) insert from the peptide 10 epitope of outer membrane (OM) protein F of Pseudomonas aeruginosa to serve as a protective vaccine against P. aeruginosa was tested by using the murine chronic pulmonary infection model. Mice immunized with the chimeric virus developed antibodies that reacted in an enzyme-linked immunosorbent assay with peptide 10, with purified protein F, and with whole cells of various immunotype strains of P. aeruginosa but failed to react with a protein F-deficient strain of P. aeruginosa. The chimeric-virus antisera reacted specifically with protein F alone when immunoblotted against proteins extracted from cell envelopes of each of the seven Fisher-Devlin immunotype strains and had significantly greater in vitro opsonic activity for P. aeruginosa than did antisera from wild-type influenza virus-immunized mice. Subsequent to intratracheal challenge with agar-encased cells of P. aeruginosa, chimeric-virus-immunized mice developed significantly fewer severe lung lesions than did control mice immunized with the wild-type influenza virus. Furthermore, the chimeric influenza virus-immunized group had a significantly smaller percentage of mice with >5 × 103 CFU of P. aeruginosa in their lungs upon bacterial quantitation than did the control group. These data indicate that chimeric influenza viruses expressing epitopes of OM protein F warrant continued development as vaccines to prevent pulmonary infections caused by P. aeruginosa.

Documentos Relacionados