A comparison of the different DNA binding specificities of the bZip proteins C/EBP and GCN4.

AUTOR(ES)
RESUMO

The bZip proteins GCN4 and C/EBP differ in their DNA binding specificities: GCN4 binds well to the pseudopalindromic AP1 site 5'-A4T3G2A1C0T1C2'A3'T4'-3' and to the palindromic ATF/CREB sequence 5'-A4T3G2A1-C0*G0'T1'C2'A3'T4'-3'; C/EBP preferentially recognizes the palindromic sequence 5'-A4T3T2G1C0*G0'C1'A2'-A3'T4'-3'. According to the X-ray structures of GCN4-DNA complexes, five residues of the basic region of GCN4 are involved in specific base contacts: asparagine -18, alanine -15, alanine -14, serine -11 and arginine -10 (numbered relative to the start point of the leucine zipper, which we define as +1). In the basic region of C/EBP position -14 is occupied by valine instead of alanine, the other four residues being identical. Here we analyse the role of valine -14 in C/EBP-DNA complex formation. Starting from a C/EBP-GCN4 chimeric bZip peptide which displays C/EBP specificity, we systematically mutated position -14 of its basic region and characterized the DNA binding specificities of the 20 possible different peptides by gel mobility shift assays with various target sites. We present evidence that valine -14 of C/EBP interacts more strongly with thymine 2 than with cytosine 1' of the C/EBP binding site, unlike the corresponding alanine -14 of GCN4, which exclusively contacts thymine 1' of the GCN4 binding sites.

Documentos Relacionados