A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs.

AUTOR(ES)
RESUMO

Two murine hepatitis virus strain A59 defective interfering (DI) RNAs were generated by undiluted virus passages. The DI RNAs were encapsidated efficiently. The smallest DI particle, DI-a, contained a 5.5-kb RNA consisting of the following three noncontiguous regions from the MHV-A59 genome, which were joined in frame: the 5'-terminal 3.9 kb, a 798-nucleotide fragment from the 3' end of the polymerase gene, and the 3'-terminal 805 nucleotides. A full-length cDNA clone of the DI-a genome was constructed and cloned downstream of the bacteriophage T7 promoter. Transcripts derived from this clone, pMIDI, were used for transfection of MHV-A59-infected cells and found to be amplified and packaged. Deletion analysis of pMIDI allowed us to identify a 650-nucleotide region derived from the 3' end of the second open reading frame of the polymerase gene that was required for efficient encapsidation.

Documentos Relacionados