A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin.

AUTOR(ES)
RESUMO

1. Intracellular Ca2+ concentration ([Ca2+]i) was monitored in single cells isolated from adult rat supraoptic (SO) nuclei. The great majority of cells (85%) were neurones and most were immunoreactive to oxytocin or to vasopressin (AVP). 2. The resting [Ca2+]i of the majority (80%) of the neurones remained stable while 20% of the neurones displayed spontaneous [Ca2+]i oscillations which disappeared in low-Ca2+ (100 nM) EGTA buffer. 3. Addition of 100 nM oxytocin increased the [Ca2+]i in both stable and oscillating cells. Two types of responses were observed: (i) a sustained response with [Ca2+]i being maintained at an elevated level and (ii) a brief response with [Ca2+]i quickly returning to a near-resting level. Responses were reproducible, dose dependent and blocked with a specific oxytocin antagonist. 4. Removal of extracellular Ca2+ did not block the oxytocin response. In EGTA buffer, application of thapsigargin (200 nM) onto oxytocin-sensitive cells induced an increase in [Ca2+]i and inhibited the oxytocin response. These effects were not induced by other intracellular Ca2+ mobilizers such as tBuBHQ (see Methods) or caffeine. 5. In conclusion, half of the SO cells respond to oxytocin with a rise in [Ca2+]i. The effect is mediated by oxytocin receptors and results from release of Ca2+ from thapsigargin-sensitive stores.

Documentos Relacionados