A Subset of Porcine Reproductive and Respiratory Syndrome Virus GP3 Glycoprotein Is Released into the Culture Medium of Cells as a Non-Virion-Associated and Membrane-Free (Soluble) Form†

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The GP3 protein of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus (PRRSV) was expressed in 293 cells by a recombinant human type 5 adenovirus carrying the open reading frame 3 gene. The protein exhibited a molecular mass of 42 kDa and comigrated with GP3 expressed in PRRSV-infected MARC-145 cells. Removal of N-linked glycans from GP3 resulted in a 27-kDa protein (P3), confirming its highly glycosylated nature. Pulse-chase experiments carried out either in the context of PRRSV infection or upon individual expression of GP3 in 293 cells showed that the protein remains completely endo-β-N-acetylglucosaminidase H-sensitive even after 4 h of synthesis. Thus, the transport of GP3 was restricted to the premedial Golgi compartment, presumably the endoplasmic reticulum (ER). However, a minor fraction of GP3 was found to be secreted in the culture medium as a soluble membrane-free form. This released protein (sGP3) was readily identified upon individual expression of GP3 in 293 cells as well as in the context of PRRSV infection, albeit at lower levels. The sGP3 migrated as a smear and displayed a molecular mass ranging from 43 to 53 kDa. The unglycosylated form of sGP3 comigrated with its intracellular deglycosylated counterpart, suggesting that the release from the cell of a subset of GP3 did not result from cleavage of a putative membrane-anchor sequence. Strikingly, unlike GP3, the sGP3 acquired Golgi-specific modifications of its carbohydrate side chains and folded into a disulfide-linked homodimer. Brefeldin A treatment completely abolished the release of sGP3, suggesting that the ER-to-Golgi compartment is an obligatory step in cellular secretion of sGP3. In contrast, 10 mM monensin did not prevent sGP3 release but inhibited the terminal glycosylation that confers on the protein its diffuse pattern. Since GP3 was found to be nonstructural in the case of the North American strain, secretion of a minor fraction of GP3 might be an explanation for its high degree of immunogenicity in infected pigs. Furthermore, this secreted protein might be relevant as a model for further studies on the cellular subcompartments involved in the sorting of proteins to the extracellular milieu.

Documentos Relacionados