A WD40 Repeat Protein Regulates Fungal Cell Differentiation and Can Be Replaced Functionally by the Mammalian Homologue Striatin

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Fruiting body development in fungi is a complex cellular differentiation process that is controlled by more than 100 developmental genes. Mutants of the filamentous fungus Sordaria macrospora showing defects in fruiting body formation are pertinent sources for the identification of components of this multicellular differentiation process. Here we show that the sterile mutant pro11 carries a defect in the pro11 gene encoding a multimodular WD40 repeat protein. Complementation analysis indicates that the wild-type gene or C-terminally truncated versions of the wild-type protein are able to restore the fertile phenotype in mutant pro11. PRO11 shows significant homology to several vertebrate WD40 proteins, such as striatin and zinedin, which seem to be involved in Ca2+-dependent signaling in cells of the central nervous system and are supposed to function as scaffolding proteins linking signaling and eukaryotic endocytosis. Cloning of a mouse cDNA encoding striatin allowed functional substitution of the wild-type protein with restoration of fertility in mutant pro11. Our data strongly suggest that an evolutionarily conserved cellular process controlling eukaryotic cell differentiation may regulate fruiting body formation.

Documentos Relacionados