Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum.

AUTOR(ES)
RESUMO

Mechanism of enzymatic conversion of a fatty acid to the corresponding alkane by the loss of the carboxyl carbon was investigated with particulate preparations from Pisum sativum. A heavy particulate preparation (sp. gr., 1.30 g/cm3) isolated by two density-gradient centrifugation steps catalyzed conversion of octadecanal to heptadecane and CO. Experiments with [1-3H,1-14C]octadecanal showed the stoichiometry of the reaction and retention of the aldehydic hydrogen in the alkane during this enzymatic decarbonylation. This decarbonylase showed an optimal pH of 7.0 and a Km of 35 microM for the aldehyde. This enzyme was severely inhibited by metal ion chelators and showed no requirement for any cofactors. Microsomal preparations and the particulate fractions from the first density-gradient step catalyzed acyl-CoA reduction to the corresponding aldehyde. Electron microscopic examination showed the presence of fragments of cell wall/cuticle but no vesicles in the decarbonylase preparation. It is concluded that the aldehydes produced by the acyl-CoA reductase located in the endomembranes of the epidermal cells are converted to alkanes by the decarbonylase located in the cell wall/cuticle region.

Documentos Relacionados