Altered levels of the Drosophila HRB87F/hrp36 hnRNP protein have limited effects on alternative splicing in vivo.

AUTOR(ES)
RESUMO

The Drosophila melanogaster genes Hrb87F and Hrb98DE encode the fly proteins HRB87F and HRB98DE (also known as hrp36 and hrp38, respectively) that are most similar in sequence and function to mammalian A/B-type hnRNP proteins. Using overexpression and deletion mutants of Hrb87F, we have tested the hypothesis that the ratio of A/B hnRNP proteins to SR family proteins modulates certain types of alternative splice-site selection. In flies in which HRB87F/hrp36 had been overexpressed 10- to 15-fold above normal levels, aberrant internal exon skipping was induced in at least one endogenous transcript, the dopa decarboxylase (Ddc) pre-mRNA, which previously had been shown to be similarly affected by excess HRB98DE/hrp38. In a second endogenous pre-mRNA, excess HRB87F/hrp36 had no effect on alternative 3' splice-site selection, as expected from mammalian hnRNP studies. Immunolocalization of the excess hnRNP protein showed that it localized correctly to the nucleus, specifically to sites on or near chromosomes, and that the peak of exon-skipping activity in Ddc RNA correlated with the peak of chromosomally associated hnRNP protein. The chromosomal association and level of the SR family of proteins were not significantly affected by the large increase in hnRNP proteins during this time period. Although these results are consistent with a possible role for hnRNP proteins in alternative splicing, the more interesting finding was the failure to detect significant adverse effects on flies with a greatly distorted ratio of hnRNPs to SR proteins. Electron microscopic visualization of the general population of active genes in flies overexpressing hnRNP proteins also indicated that the great majority of genes seemed normal in terms of cotranscriptional RNA processing events, although there were a few abnormalities consistent with rare exon-skipping events. Furthermore, in a Hrb87F null mutant, which is viable, the normal pattern of Ddc alternative splicing was observed, indicating that HRB87F/hrp36 is not required for Ddc splicing regulation. Thus, although splice-site selection can be affected in at least a few genes by gross overexpression of this hnRNP protein, the combined evidence suggests that if it plays a general role in alternative splicing in vivo, the role can be provided by other proteins with redundant functions, and the role is independent of its concentration relative to SR proteins.

Documentos Relacionados