An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes.

AUTOR(ES)
RESUMO

The operon coding for a respiratory quinol oxidase was cloned from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. It contains three genes, soxA, soxB and soxC. The first two genes code for proteins related to the cytochrome c oxidase subunits II and I, respectively. soxC encodes a protein homologous to cytochrome b, which is a subunit of the mitochondrial and bacterial cytochrome c reductases and the chloroplast cytochrome b6f complex. soxA is preceded by a promoter and the genes are cotranscribed into a 4 kb mRNA. Their protein products form a complex which has been partially purified and has quinol oxidase activity. The reduced minus oxidized absorption spectrum of the complex has two maxima at 586 and 606 nm. The latter is typical of cytochrome c oxidase. The complex contains four haems A. Two haems belong to the 'cytochrome oxidase' part of the complex and two are probably bound to be apocytochrome b (SoxC) and responsible for the 586 nm absorption peak. The homology between the sox gene products and their mitochondrial counterparts suggests that energy conservation coupled to the quinol oxidation catalysed either by the Sulfolobus oxidase or two mitochondrial respiratory enzymes may have a similar mechanism.

Documentos Relacionados