An mRNA Stability Complex Functions with Poly(A)-Binding Protein To Stabilize mRNA In Vitro

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. α-Globin mRNA stability is dictated by sequences in the 3′ untranslated region (3′UTR) which form a specific ribonucleoprotein complex (α-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, αCP1 and αCP2. Using an in vitro-transcribed and polyadenylated α-globin 3′UTR, we have devised an in vitro mRNA decay assay which reproduces the α-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the α-complex by sequestration of αCP1 and αCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the α-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between αCP1 and αCP2 with PABP suggests that the α-complex can directly interact with PABP. Therefore, the α-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.

Documentos Relacionados