An Rpb4/Rpb7-Like Complex in Yeast RNA Polymerase III Contains the Orthologue of Mammalian CGRP-RCP

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Δrpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.

Documentos Relacionados