Analysis of current fluctuations during after-hyperpolarization current in dentate granule neurones of the rat hippocampus.

AUTOR(ES)
RESUMO

1. We have studied macroscopic current fluctuations associated with the after-hyperpolarization current (IAHP) that follows a 200 ms voltage-clamp step to 0 mV in dentate granule (DG) neurones of the rat hippocampus. This maximally effective stimulus produced a peak IAHP of 205 +/- 20 pA. Background noise was minimized by using the whole-cell single-electrode voltage-clamp configuration. 2. Conventional current-variance analysis was performed on IAHP to obtain estimates of the unitary AHP channel current (i) and the maximal attainable AHP current (Imax). A second approach, utilizing changes in the power spectrum of IAHP 'noise' during the decay of IAHP, was employed to yield an independent estimate of Imax as well as an estimate of the mean open-state duration of AHP channels. 3. Changes in the power spectrum during IAHP decay revealed that the mean channel open time is fixed at 6.9 +/- 0.5 ms and that the decay is due to changes in channel closed-state duration. The same analysis gave a value for Imax of 320 +/- 20 pA (n = 7). 4. Current-variance analysis suggests that channels responsible for generation of IAHP have a unitary current of 0.29 +/- 0.08 pA at -45 mV in 5 mM extracellular potassium and an Imax of 400 +/- 180 (n = 7). Thus, both methods indicate that about 1200 channels are available to generate IAHP in DG neurones and that about 60% are open at the peak of a maximal IAHP. 5. Computer simulations of IAHP currents in a model neurone show that dendritic current sources will result in an underestimation of i while Imax is underestimated to a lesser extent. Estimates of Imax obtained from power-spectrum analysis are more accurate and less affected by neuronal electrotonic structure than estimates of Imax based on current-variance analysis.

Documentos Relacionados