Analysis of toxicity of streptococcal pyrogenic exotoxin A mutants.

AUTOR(ES)
RESUMO

Streptococcal pyrogenic exotoxin A (SPE A) is secreted by some strains of Streptococcus pyogenes and is strongly associated with streptococcal toxic shock syndrome (STSS), a severe and often fatal illness. SPE A possesses a number of biological properties, some of which are shared with a group of exotoxins of streptococcal and staphylococcal origins, the pyrogenic toxin superantigens (PTSAgs). SPE A's most extensively studied property is superantigenicity. Superantigenic activation of T cells and monocytes stimulates the release of cytokines such as tumor necrosis factors alpha and beta, interleukin 1, and gamma interferon. These endogenous mediators are considered to be the primary cause of capillary leak, hypotension, and shock, the most severe manifestations of STSS. However, several studies have suggested that other properties of SPE A, such as ability to greatly enhance host susceptibility to endotoxin and ability to interact directly with endothelial cells, may play substantial roles in the syndrome. In this work we generated single- and double-site mutations of SPE A at residues K16, N20, C87, C90, C98, K157, S195, N20/C98, and N20/K157. The mutant SPE A's were analyzed in vivo for their lethal activity and in vitro for their superantigenic ability. Our results indicate that SPE A's ability to induce lethality and endotoxin enhancement does not require superantigenicity, and conversely superantigenicity does not necessarily lead to lethality. Thus, these properties and their relative contributions to the onset of hypotension and shock may be separable. Furthermore, evidence is presented that certain mutant toxins may be suitable for use as vaccine toxoids.

Documentos Relacionados