Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli

AUTOR(ES)
FONTE

The National Academy of Sciences of the USA

RESUMO

The HIV-1 envelope subunit gp41 plays a role in viral entry by initiating fusion of the viral and cellular membranes. A chimeric molecule was constructed centered on the ectodomain of gp41 without the fusion peptide, with a trimeric isoleucine zipper derived from GCN4 (pIIGCN4) on the N terminus and part of the trimeric coiled coil of the influenza virus hemagglutinin (HA) HA2 on the C terminus. The chimera pII-41-HA was overexpressed as inclusion bodies in bacteria and refolded to soluble aggregates that became monodisperse after treatment with protease. Either trypsin or proteinase K, used previously to define a protease-resistant core of recombinant gp41 [Lu, M., Blacklow, S. C. & Kim, P. S. (1995) Nat. Struct. Biol. 2, 1075–1082], removed about 20–30 residues from the center of gp41 and all or most of the HA2 segment. Evidence is presented that the resulting soluble chimera, retaining the pIIGCN4 coiled coil at the N terminus, is an oligomeric highly α-helical rod about 130 Å long that crystallizes. The chimeric molecule is recognized by the Fab fragments of mAbs specific for folded gp41. A similar chimera was assembled from the two halves of the molecule expressed separately in different bacteria and refolded together. Crystals from the smallest chimera diffract x-rays to 2.6-Å resolution.

Documentos Relacionados