Autoregulatory control of translatable phytochrome mRNA levels

AUTOR(ES)
RESUMO

Translatable phytochrome mRNA represents ≈5 × 10-3% of the total poly(A)-RNA present in etiolated Avena seedlings, as determined by incorporation of radioactivity into the immunoprecipitable apoprotein in a cell-free translation system. Irradiation of such seedlings with 5-s red light induces a decline in this mRNA that is detectable within 15-30 min, shows a 50% reduction within 50-60 min, and results in a >95% reduction within 2 hr. The effect of the red light pulse is reversed by an immediately subsequent far-red pulse to the level of the far-red-light control, indicating that phytochrome exerts autoregulatory control over its own translatable mRNA level. This result necessitates revision of existing concepts of how phytochrome concentrations are modulated in vivo. Red-light dose-response curves show that the response is sensitive to very low light levels. Conversion of <1% of the total cellular phytochrome to the biologically active far-red-absorbing form is sufficient to induce ≈60% of the maximal response, and 20% far-red-absorbing form saturates the response. The observed change in translatable phytochrome mRNA level is one of the most rapid phytochrome-induced alterations in any cellular mRNA yet recorded. Thus, autoregulation of phytochrome mRNA provides an attractive opportunity to examine the early sequence of events in phytochrome control of gene expression.

Documentos Relacionados