Axolemmal and septal conduction in the impedance of the earthworm medial giant nerve fiber.

AUTOR(ES)
RESUMO

Ionic conduction in the axolemmal and septal membranes of the medial giant fiber (MGF) of the earthworm (EW) Lumbricus terrestris was assessed by impedance spectroscopy in the frequency range 2.5-1000 Hz. Impedance loci in the complex plane were described by two semi-circular arcs, one at a lower characteristic frequency (100 Hz) and the other at a higher frequency (500 Hz). The lower frequency arc had a chord resistance of 53 k omega and was not affected by membrane potential changes or ion channel blockers [tetrodotoxin (TTX), 3,4-diaminopyridine (3,4-DAP), 4-aminopyridine (4-AP), and tetraethylammonium (TEA)]. The higher frequency arc had a chord resistance of 274 k omega at resting potential, was voltage-dependent, and was affected by the addition of TTX, 3,4-DAP, 4-AP, and TEA to the physiological EW salines. When all four blockers were added to the bathing solution, the impedance locus was described by two voltage-independent arcs. Considering the effects of these and other (i.e., Cd and Ni) ion channel blockers, we conclude that: 1) the higher frequency locus reflects conduction by voltage-sensitive ion channels in the axolemmal membrane, which contains at least four ion channels selective for sodium, calcium, and potassium (delayed rectifier and calcium-dependent), and 2) the lower frequency locus reflects voltage-insensitive channels in the septal membrane, which separates adjacent MGFs.

Documentos Relacionados