Biochemical evidence for multiple independent emetine resistance genes in Chinese hamster cells.

AUTOR(ES)
RESUMO

Hybridization-complementation studies indicated that mutations in multiple genes can render Chinese hamster cells resistant to the alkaloid translation inhibitor emetine. Two of the genes, emtA and emtB, recognized in Chinese hamster lung and ovary cell lines, respectively, are known to affect the ribosomes of the cells directly. Although mutations in a third gene, emtC, affect the translation apparatus of Chinese hamster peritoneal cells in vitro (Wasmuth et al., Mol. Cell. Biol. 1:58-65, 1981), the molecular product of the emtC locus remains to be determined. To study the molecular basis for genetic complementation among emetine-resistant Chinese hamster cell mutants, we analyzed ribosomal proteins elaborated by complementing, emetine-sensitive hybrid clones (EmtB X EmtA and EmtB X EmtC) and by emetine-resistant clones that segregated from the hybrids. The electrophoretic forms of ribosomal protein S14 (the emtB gene product) elaborated by these clones indicated that the EmtA and EmtC phenotypes are independent of the emtB locus and that the emtA and emtC loci are not chromosomally linked to emtB.

Documentos Relacionados