Biosorvents synthesis and characterization from imobilized Sargassum sp biomass using sol-gel process in ceramics matrix / Sintese e caracterização de biossorventes a partir da imobilização da biomassa Sargassum sp em matrizes ceramicas pelo processo sol-gel

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

In this work had been made a research and the development of an alternative adsorbent which may be applied in the treatment of industrial liquid effluents containing low concentration of heavy metals, Cd, Cu and Zn. The main objective was to produce 4A type zeolite-Sargassum sp. adsorbents spheres with the following characteristics: competitive fabrication cost; high uptake capacity of the heavy metals, Cd, Cu and Zn; high affinity by the referred heavy metals; and appropriated adsorption kinetic. The marking of the adsorbents spheres had involve the innovative use of the Sol-gel Process. That had permitted to obtain seven types of adsorbents spheres for combination and immobilization of the particles of traditional adsorbents Sargassum sp., kaolin, alumina and 4A type zeolite. This immobilization process causes an obstruction of the pores and the channels present in these particles that reduced the uptake capacity of the produced adsorbents spheres. Fortunately, the combination of traditional adsorbents particles produced adsorbent spheres with high uptake capacity, high uptake efficiency, and appropriate adsorption kinetic. As, two types of adsorbent spheres, 4A type zeolite and 4A type zeolite-50% Sargassum sp. adsorbed 746 µmol/g and 709 µmol/g with an adsorption velocity of 18 µmol/g.h and 20 µmol/g.h, and a uptake efficiency of 82% and 83%, respectively. The adsorption behavior of these adsorbent spheres had been fitting to the Freundlich model. They have an adsorption kinetic compatible with the pseudo-second order model. When it treated an industrial liquid effluent with these adsorbent spheres, they showed a uptake efficiency higher than 90% and while an uptake efficiency of 99,5% is shown for the commercial chelant resin.

ASSUNTO(S)

biomass ceramic materials biomassa materiais materiais compostos ceramica (tecnologia) sintese de materiais materials materials synthesis

Documentos Relacionados