Biosynthesis of Cardiolipin from Phosphatidylglycerol in Staphylococcus aureus

AUTOR(ES)
RESUMO

Cardiolipin (CL) synthetase from Staphylococcus aureus catalyzes the complete conversion of two molecules of phosphatidylglycerol (PG) to one molecule of CL and one molecule of glycerol. The fatty acids and phosphates of the two PG molecules can be quantitatively recovered in the CL. The enzyme is membrane-bound, shows a linear relationship with the product formed between 10 and 125 μg of membrane protein, has a pH optimum at 4.4, a temperature optimum between 37 and 45 C, a Km for PG of 2.1 × 10−4m, a Vmax of 200 nmoles of CL per min per mg of membrane protein, and does not require monovalent or divalent metals for activity. The enzyme has no nucleotide requirement and is not affected by prolonged dialysis, and treatment of the enzyme with charcoal has no effect on its activity. The enzyme has no phosphomonoesterase or phosphodiesterase activity, does not act on CL, is specific for PG, and CL and glycerol are the sole products of its activity. Other lipids do not stimulate or inhibit its activity. The enzyme is inhibited by organic solvents and some detergents. There is sufficient CL synthetase activity to account for CL synthesis during exponential growth. Inhibition of CL hydrolysis during growth results in an increase in CL that is balanced by a loss of PG. The activity of CL synthetase is not affected by cytidine diphosphate diglyceride but is inhibited competitively by the product, CL.

Documentos Relacionados