Blow-up of solutions of nonlinear wave equations in three space dimensions
AUTOR(ES)
John, Fritz
RESUMO
Solutions u(x, t) of the inequality □u ≥ A|u|p for x ε R3, t ≥ 0 are considered, where □ is the d'Alembertian, and A,p are constants with A > 0, 1 < p < 1 + √2. It is shown that the support of u is compact and contained in the cone 0 ≤ t ≤ t0 -|x - x0|, if the “initial data” u(x, 0), ut(x, 0) have their support in the ball|x - x0| ≤ t0. In particular, “global” solutions of □u = A|u|p with initial data of compact support vanish identically. On the other hand, for A > 0, p > 1 + √2, global solutions of □u = A|u|p exist, if the initial data are of compact support and “sufficiently” small.
ACESSO AO ARTIGO
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=383428Documentos Relacionados
- Lower bounds for the life-span of solutions of nonlinear wave equations in three dimensions
- Inexistencia de blow-up hiperbolico simples para a equação quasi-geostrofica
- A fotografia em Las babas del diablo e em Blow-Up : marca de indecisões
- Soluções tipo blow-up para equações elípticas quasilineares com termo semilinear satisfazendo a condição de Keller-Osserman
- Existência de soluções blow-up via método de sub e supersolução para uma classe de problemas elípticos.