BpeAB-OprB, a Multidrug Efflux Pump in Burkholderia pseudomallei

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents, including β-lactams, aminoglycosides, macrolides, and polymyxins. An operon, bpeR-bpeA-bpeB-oprB, which encodes a putative repressor, a membrane fusion protein, an inner membrane protein, and an outer membrane protein, respectively, of a multidrug efflux pump of the resistance-nodulation-division family was identified in B. pseudomallei. The divergently transcribed bpeR gene encodes a putative repressor protein of the TetR family which probably regulates the expression of the bpeAB-oprB gene cluster. Comparison of the MICs and minimal bactericidal concentrations of antimicrobials for bpeAB deletion mutant KHWΔbpeAB and its isogenic wild-type parent, KHW, showed that the B. pseudomallei BpeAB-OprB pump is responsible for the efflux of the aminoglycosides gentamicin and streptomycin, the macrolide erythromycin, and the dye acriflavine. Antibiotic efflux by the BpeAB-OprB pump was dependent on a proton gradient and differs from that by the AmrAB-OprA pump in that it did not efflux the aminoglycoside spectinomycin or the macrolide clarithromycin. The broad-spectrum efflux pump inhibitor MC-207,110 did not potentiate the effectiveness of the antimicrobials erythromycin and streptomycin in B. pseudomallei.

Documentos Relacionados