Brain networks underlying human timing behavior are influenced by prior context

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

The continuation paradigm is often used to investigate the behavioral and neural mechanisms of timing. Typically, a movement rate is established by pacing with a metronome. Then, the metronome is turned off and the subject continues at the established rate. Performance during continuation is assumed to be based on internal timing mechanisms. Here, we investigated the degree to which the neural activity underlying time representation depends on the initial pacing context, that is, whether pacing was established by moving in-phase (the usual procedure) or anti-phase (syncopation) with an auditory metronome. Functional MRI was measured from 14 subjects during four conditions: synchronized pacing, synchronized continuation, syncopated pacing, and syncopated continuation. In general, movements were timed consistently for all four conditions. However, a much broader network of activation was engaged during syncopation compared with synchronization, including increased activation in supplementary motor area, left premotor area, right thalamus, bilateral inferior frontal gyrus, and cerebellum. No differences were found when comparing continuation with the preceding pacing phase except for decreased activity in auditory-related regions due to the absence of the metronome. These results demonstrate that the cortical and subcortical areas recruited to support a simple motor timing task depend crucially on the method used to establish the temporal reference. Thus, the neural mechanisms underlying time and timing are highly flexible, reflecting the context in which the timing is established.

Documentos Relacionados