Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Activation of distinct classes of potassium channels can dramatically affect the frequency and the pattern of neuronal firing. In a subpopulation of vagal afferent neurons (nodose ganglion neurons), the pattern of impulse activity is effectively modulated by a Ca2+-dependent K+ current. This current produces a post-spike hyperpolarization (AHPslow) that plays a critical role in the regulation of membrane excitability and is responsible for spike-frequency accommodation in these neurons. Inhibition of the AHPslow by a number of endogenous autacoids (e.g., histamine, serotonin, prostanoids, and bradykinin) results in an increase in the firing frequency of vagal afferent neurons from <0.1 to >10 Hz. After a single action potential, the AHPslow in nodose neurons displays a slow rise time to peak (0.3–0.5 s) and a long duration (3–15 s). The slow kinetics of the AHPslow are due, in part, to Ca2+ discharge from an intracellular Ca2+-induced Ca2+ release (CICR) pool. Action potential-evoked Ca2+ influx via either L or N type Ca2+ channels triggers CICR. Surprisingly, although L type channels generate 60% of action potential-induced CICR, only Ca2+ influx through N type Ca2+ channels can trigger the CICR-dependent AHPslow. These observations suggest that a close physical proximity exists between endoplasmic reticulum ryanodine receptors and plasma membrane N type Ca2+ channels and AHPslow potassium channels. Such an anatomical relation might be particularly beneficial for modulation of spike-frequency adaptation in vagal afferent neurons.

Documentos Relacionados