Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions.

AUTOR(ES)
RESUMO

Candida albicans binds to several species of oral streptococci, in particular Streptococcus gordonii, through recognition of a streptococcal cell wall polysaccharide receptor (A. R. Holmes, P. K. Gopal, and H. F. Jenkinson, Infect. Immun. 63:1827-1834, 1995). We now show that isogenic cell surface protein mutants of S. gordonii DL1, unaltered in expression of cell wall polysaccharide, are reduced in ability to support adherence of C. albicans cells in a solid-phase assay. Inactivation of the S. gordonii cshA and cshB genes, encoding high-molecular-mass cell surface polypeptides, and inactivation of the sspA and sspB genes, encoding antigen I/II salivary adhesins, resulted in 40 and 79% reductions, respectively, in adherence of C. albicans cells. Inactivation of the S. gordonii scaA gene encoding a cell surface lipoprotein had no effect on C. albicans adherence. Polyclonal antiserum to streptococcal antigen I/II protein SpaP and antibodies specific to the amino-terminal nonrepetitive (NR) domain of CshA both inhibited adherence of C. albicans to S. gordonii cells. Conversely antibodies to the amino acid repeat block repetitive (R) domain of CshA, or to ScaA, did not inhibit C. albicans adherence. Immobilized recombinant polypeptide fragments of CshA comprising NR domain or R domain sequences both supported adherence of C. albicans cells. Expression of S. gordonii SspB protein on the surface of Enterococcus faecalis conferred on the enterococcal cells the ability to bind C. albicans, and this was ablated by antigen I/II antiserum. Collectively the results suggest that interaction of C. albicans with S. gordonii is mediated by a complement of adhesin-receptor interactions that involves two families of streptococcal multifunctional polypeptide adhesins, bacterial cell wall polysaccharide, and as yet unidentified yeast cell surface components.

Documentos Relacionados