Caracterização de dois cDNAs homológos e uma AP endonuclease em cana-de-açúcar

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

The genome of all organisms is subject to injuries that can be caused by endogenous and environmental factors. If these lesions are not corrected, it can be fixed generating a mutation which can be lethal to the organisms. In order to prevent this, there are different DNA repair mechanisms. These mechanisms are well known in bacteria, yeast, human, but not in plants. Two plant models Oriza sativa and Arabidopsis thaliana had the genome sequenced and due to this some DNA repair genes have been characterized. The aim of this work is to characterized two sugarcane cDNAs that had homology to AP endonuclease: scARP1 and scARP3. In silico has been done with these two sequences and other from plants. It has been observed domain conservation on these sequences, but the cystein at 65 position that is a characteristic from the redox domain in APE1 protein was not so conservated in plants. Phylogenetic relationship showed two branches, one branch with dicots and monocots sequence and the other branch with only monocots sequences. Another approach in order to characterized these two cDNAs was to construct overexpression cassettes (sense and antisense orientation) using the 35S promoter. After that, these cassettes were transferred to the binary vector pPZP211. Furthermore, previously in the laboratory was obtained a plant from icotiana tabacum containing the overexpression cassette in anti-sense orientation. It has been observed that this plant had a slow development and problems in setting seeds. After some manual crossing, some seeds were obtained (T2) and it was analyzed the T2 segregation. The third approach used in this work was to clone the promoter region from these two cDNAs by PCR walking. The sequences obtained were analyzed using the program PLANTCARE. It was observed in these sequences some motives that may be related to oxidative stress response

ASSUNTO(S)

base excision repair cana-de-açúcar biologia molecular sugarcane reparo por excisão de base ap endonuclease ap endonuclease

Documentos Relacionados