Caulobacter FliQ and FliR membrane proteins, required for flagellar biogenesis and cell division, belong to a family of virulence factor export proteins.

AUTOR(ES)
RESUMO

The Caulobacter crescentus fliQ and fliR genes encode membrane proteins that have a role in an early step of flagellar biogenesis and belong to a family of proteins implicated in the export of virulence factors. These include the MopD and MopE proteins from Erwinia carotovora, the Spa9 and Spa29 proteins from Shigella flexneri, and the YscS protein from Yersinia pestis. Inclusion in this family of proteins suggests that FliQ and FliR may participate in an export pathway required for flagellum assembly. In addition, mutations in either fliQ or fliR exhibit defects in cell division and thus may participate directly or indirectly in the division process. fliQ and fliR are class II flagellar genes residing near the top of the regulatory hierarchy that determines the order of flagellar gene transcription. The promoter sequence of the fliQR operon differs from most known bacterial promoter sequences but is similar to other Caulobacter class II flagellar gene promoter sequences. The conserved nucleotides in the promoter region are clustered in the -10, -20 to -30, and -35 regions. The importance of the conserved bases for promoter activity was demonstrated by mutational analysis. Transcription of the fliQR operon is initiated at a specific time in the cell cycle, and deletion analysis revealed that the minimal sequence required for transcriptional activation resides within 59 bp of the start site.

Documentos Relacionados