Cell-free translation of purified virion-associated high-molecular-weight RNA synthesized in vitro by vaccinia virus.

AUTOR(ES)
RESUMO

Virion-associated high-molecular-weight (HMW) RNA synthesized in vitro by purified vaccinia virus particles has been translated in a wheat germ cell-free protein synthesizing system. Purified HMW RNA directs the synthesis of translation products which are identical to the translation products made in response to in vitro-synthesized, virion-released 8 to 12S mRNA. The translation of HMW RNA proceeds exclusively through a 5'-terminal cap-mediated initiation step. Furthermore, only one coding sequence is translated per HMW RNA molecule, and that sequence is probably located near the 5' end of the molecule. These conclusions are based on the following results. (i) Sodium dodecyl sulfate--polyacrylamide gel electrophoresis patterns of translation products synthesized in response to HMW RNA and in response to 8 to 12S mRNA were qualitatively identical. (ii) On an equal weight basis, HMW RNA was 25 to 30% as active as 8 to 12S mRNA in stimulating in vitro protein synthesis. (iii) Unmethylated HMW RNA was translated at 10% the efficiency of the methylated form of this RNA. (iv) m7pG inhibited the translation of fully methylated HMW RNA by 90%. (v) After the initiation step of translation was blocked by aurintricarboxylic acid, the rate with which amino acids were incorporated into individual polypeptides decreased in a similar manner for the translation of both HMW RNA and 8 to 12S mRNA. Virion-released 8 to 12S mRNA derived from virion-associated HMW RNA during a chase in the presence of ATP, GTP, and S-adenosylmethionine was also translated. At low RNA concentrations, the derived RNA appeared to stimulate amino acid incorporation more efficiently than the HMW RNA precursor. However, at higher concentrations of this RNA, protein synthesis was severely inhibited.

Documentos Relacionados