Characteristics of transmural potential changes associated with the proton-peptide co-transport in toad small intestine.

AUTOR(ES)
RESUMO

1. Ionic dependence and kinetic properties of the peptide-evoked potentials across everted toad intestine were investigated with eighteen dipeptides and four tripeptides. All peptides evoked saturable increases in the mucosal negativity regardless of the presence of Na+. 2. The peptide-evoked potentials recorded in the absence of Na+ were sensitive to external pH (pHo); lowering pHo from 7.4 to 6.5 and 5.5 caused stepwise increases in their amplitude. 3. Loading epithelial cells with 9-aminoacridine or acetate caused a significant increase or decrease in amplitude of the Gly-Gly-evoked potential, suggesting intracellular alkalinization or acidification also has a great influence on the peptide-evoked potential. 4. Kinetically, Na+-independent peptide-evoked potentials conformed to simple Michaelis-Menten kinetics, and lowering pHo caused a decrease of the half-saturation concentration (Kt) for Gly-Gly without changing the maximum potential difference increase. Similar affinity-type kinetic effect was also seen for Gly-Gly influx. 5. Simultaneous measurements of Gly-Gly-induced increase in short-circuit current and Gly-Gly influx revealed that the coupling ratio of H+ and Gly-Gly flows was 1.78 +/- 0.12, suggesting the stoichiometry of the H+-peptide co-transport being 2:1. 6. Kinetic analyses of the peptide-evoked potentials indicated that all glycyl-dipeptides tested (Gly-Gly, Gly-Pro, Gly-Sar, Gly-Leu, Gly-Phe) and other dipeptides (Ala-Ala, Ala-Phe, Phe-Ala) shared a common carrier. Gly-Gly-Gly and Ala-Ala-Ala were also found to share the same carrier, while Phe-Phe, Leu-Leu and Phe-Leu appeared to be transported by a different carrier. 7. Kt values for di- and tripeptides, which apparently shared a common carrier, fell in a narrow range (0.5-2.2 mM). There was no clear correlation between 1/Kt value and molecular weight.

Documentos Relacionados