Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa.

AUTOR(ES)
RESUMO

Pseudomonas aeruginosa transports and phosphorylates fructose via a phosphoenolpyruvate-dependent fructose phosphotransferase system (PTS). Mutant strains deficient in both PTS activity and glucose-6-phosphate dehydrogenase activity were isolated and were used to select mannitol-utilizing revertant strains singly deficient in PTS activity. These mutants were unable to utilize fructose as a carbon source and failed to accumulate exogenously provided [14C]fructose, and crude cell extracts lacked phosphoenolpyruvate-dependent fructose PTS activity. Thus, the PTS was essential for the uptake and utilization of exogenously provided fructose by P. aeruginosa. Mutations at a locus designated pts, which resulted in a loss of PTS activity, exhibited 57% linkage to argF at 55 min on the chromosome in plasmid R68.45-mediated conjugational crosses. The pts mutations in four independently isolated mutant strains exhibited from 11 to 20% linkage to argF, and one of these mutations exhibited 3% linkage to lys-9015 in phage F116L-mediated transductional crosses.

Documentos Relacionados