Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes.

AUTOR(ES)
RESUMO

The steady-state levels of mRNAs encoded by three intermediate-stage genes of vaccinia virus, A1L, A2L, and G8R, were compared with those encoded by well-characterized early- and late-stage genes. After synchronous infection of HeLa cells, the early mRNA was detected within 20 min and peaked at about 100 min; all three intermediate mRNAs were detected at 100 min and peaked at about 120 min; and the late mRNA was detected at 140 min and increased thereafter. Upon reaching maximum levels, the early and intermediate mRNAs declined at rates consistent with half-lives of about 30 min, providing the basis for rapid changes in gene expression. Intermediate mRNA was not detected when viral DNA synthesis was prevented, whereas its accumulation was enhanced by blocking translation after removal of the replication inhibitor. The 5' ends of the mRNAs initiated within a TAAAT or TAAAAT sequence in the coding DNA strand but contained a poly(A) leader of up to 30 additional bases. Diffuse bands of A1L and G8R RNA, equal to and longer than the coding region, were resolved by agarose gel electrophoresis, suggesting preferred sites of 3'-end formation that did not correlate with early gene termination signals. The cis-regulatory sequences were investigated by constructing recombinant viruses containing mutated intermediate promoters preceding the beta-galactosidase reporter gene. The effects of mutations on expression were similar to those previously obtained by transfection studies (C.J. Baldick, Jr., J.G. Keck, and B. Moss, J. Virol. 66:4710-4719, 1992), providing further evidence for functional core, spacer, and initiator regions. In addition, an up-regulated bifunctional early/intermediate promoter was created by making four single-base substitutions in the G8R promoter.

Documentos Relacionados