Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the nonionic detergent Triton X-100.

AUTOR(ES)
RESUMO

A succinic dehydrogenase (SDH) complex has been purified from Triton X-100-solubilized membranes from Bacillus subtilis by precipitation with specific antibody. Radioactively labeled precipitated complex was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography of the gels. The complex contained equimolar amounts of three polypeptides with approximate molecular weights of 65,000, 28,000, and 19,000. Five succinic dehydrogenase-negative mutants, belonging to the citF group, contained the 65,000-dalton polypeptide in a soluble form in the cytoplasm. Each 65,000-dalton polypeptide had about one molecule of flavin bound. Another citF mutant, citF11, which lacks the 65,000-dalton polypeptide, contained a membrane-bound 28,000-dalton polypeptide. The wild-type succinic dehydrogenase complex contained cytochrome, probably a cytochrome b. The 19,000-dalton polypeptide is suggested to represent the apoprotein of this cytochrome. The 65,000-dalton and the 28,000-dalton polypeptides are thought to constitute succinic dehydrogenase and to correspond to the flavoprotein and the ironprotein, respectively, as described for succinic dehydrogenase isolated from beef heart mitochondria or Rhodospirillum rubrum chromatophores. The results presented suggest that in B. subtilis succinic dehydrogenase is attached to a cytochrome b in the membrane via the 28,000-dalton (ironprotein) polypeptide.

Documentos Relacionados