Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii.

AUTOR(ES)
RESUMO

Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105 degrees C. P. brockii is also a chemolithotroph, requiring H2 and CO2 for growth. We have characterized P. brockii hydrogen-uptake activity with regard to temperature, ability to couple hydrogen oxidation to artificial electron acceptor reduction, sensitivity to O2, and cellular localization. The hydrogen-uptake activity was localized predominantly in a particulate fraction, was reversibly inhibited by O2, and coupled H2 uptake to the reduction of positive potential artificial electron acceptors. Comparisons between these results and those of the well-studied hydrogen-uptake hydrogenase from the mesophile Bradyrhizobium japonicum showed the two enzymes to be similar despite the very different natural environments of the organisms. However, the optimum temperature for activity differed greatly in the two organisms. We have also used immunological and genetic probes specific to the 65-kDa subunit of B. japonicum hydrogenase to assay crude extracts and genomic DNA, respectively, from P. brockii and found the enzymes to be similar in these respects as well. In addition, we report a formulation for artificial seawater capable of sustaining the growth of P. brockii.

Documentos Relacionados