Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of human small-cell lung cancer.

AUTOR(ES)
RESUMO

Cholera toxin (CT) inhibited the in vitro growth of three of four human small-cell lung carcinoma (SCLC) cell lines with a 50% inhibitory concentration of 27-242 ng/ml. Loss of surface membrane ruffling and the capacity of [Tyr4]-bombesin, vasopressin, and fetal calf serum to stimulate increases in intracellular free calcium clearly preceded effects on cellular metabolic activity and cell growth. 125I-[Tyr4]-bombesin binding was unaffected by CT treatment but [Tyr4]-bombesin stimulated phospholipase C activity was decreased in membranes from CT-treated SCLC cells. CT stimulated a rapid but transient increase in intracellular cyclic AMP ([cAMP]i) in SCLC. The effects of CT on susceptible SCLC were not reproduced by elevations of [cAMP]i induced by forskolin or cyclic AMP analogues. GM1 ganglioside, the cellular binding site for CT, was highly expressed in the CT-sensitive but not the CT-resistant SCLC cell lines. In contrast, expression of guanine nucleotide binding protein substrates for ADP-ribosylation by CT was similar. These data demonstrate the existence of a CT-sensitive growth inhibitory pathway in SCLC-bearing GM1 ganglioside. Addition of CT results in decreased responsiveness to several mitogenic stimuli. These results suggest novel therapeutic approaches to human SCLC.

Documentos Relacionados