Cholinergic inhibition of Ca2+ current in guinea-pig gastric and tracheal smooth muscle cells.

AUTOR(ES)
RESUMO

1. Cholinergic regulation of L-type Ca2+ channels was investigated in freshly dissociated guinea-pig gastric and tracheal smooth muscle cells. Acetylcholine (ACh, 50 microM) decreased Ca2+ channel current (ICa) by 37 +/- 3% (mean +/- S.E.M., 46 cells). 2. ACh reduced ICa at all voltages, with no shift in the current-voltage relationship. Effects of ACh were rapid (within 5 s) and repeatable, with multiple applications reproducibly inhibiting ICa in the continued presence of extracellular Ca2+ and in the presence of protein kinase C inhibitors. 3. The involvement of Ca2+ stores in this inhibition was investigated using Ca(2+)-free solution or cyclopiazonic acid (CPA) to deplete the stores. ACh initially inhibited ICa in the Ca(2+)-free solution (Na+ as charge carrier, 53 +/- 4% decrease, 18 cells) with subsequent responses significantly attenuated (n = 9). CPA (1 microM) reduced, then abolished, the effects of ACh on ICa (n = 5). 4. When studied in cell-attached patches (Ba2+ as charge carrier), ACh reduced Ca2+ channel open probability in twenty-two of thirty-six cells, consistent with the involvement of a diffusible cytosolic messenger. 5. ACh also inhibited ICa in tracheal muscle cells (reduction of 38 +/- 6% in 1 mM Ca2+, 4 cells; 77 +/- 3% in Ca(2+)-free solution, 7 cells). Furthermore, in cells where ACh elicited oscillating Ca(2+)-activated Cl- current, oscillatory inhibition of ICa was also observed (3 cells). 6. In summary, ACh causes rapid and reversible inhibition of ICa in gastric and tracheal muscles. Ca2+ stores were required to initiate this effect, with the rapid onset and oscillatory inhibition consistent with Ca2+ inhibition of the channel. Suppression of ICa would reduce Ca2+ entry during cholinergic excitation.

Documentos Relacionados