Chromatographically Fractionated Complementary Strands of Bacillus subtilis Deoxyribonucleic Acid: Biological Properties

AUTOR(ES)
RESUMO

Biological, physical, and chromatographic properties of methylated albuminkieselguhr (MAK)-fractionated complementary strands, designated as light (L) and heavy (H), of Bacillus subtilis deoxyribonucleic acid (DNA) are presented. The pattern of transforming activity along the MAK elution profile of alkilidenatured DNA shows that the residually active molecules selectively fractionated ahead of the L strand fraction, whereas the most active self-annealed molecules fractionated preferentially at the trailing end of the H strand fraction. The restoration rate of transforming activity in the late-eluting H molecules was rapid and independent of concentration during the annealing reaction. The data suggest that the self-annealing activity in the H strand is due in part to the formation of intrastrand secondary structures. Hydroxyapatite chromatography of self-annealed L and H strands yielded a major fraction (I) of highly purified strand preparations devoid of transforming activity and hypochromicity, and a minor “nativelike” fraction (II). Sedimentation velocity measurements show that, in addition to the mutual complementary nature of the L and H fractions, they differ in molecular size and possibly configuration.

Documentos Relacionados