Conformational analysis of 2-phenylthio; 2-phenylsulfinyl; 2- phenylsulfonyl N,N-diethylacetamides and 2-phenylthio; 2-phenylsulfonyl; 2- phenylsulfinyl cyclohexanones 4-substituted series / Análise conformacional das 2-feniltio, 2-fenilsulfinil e 2-fenilsulfonil-N,N-dietilacetamidas e 2-feniltio, 2-fenilsulfinil e 2-fenilsulfonil-cicloexanonas 4-substituídas

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

This thesis reports the synthesis and conformational analysis of six sedes of compounds: N,N diethyl-2-[( 4-substituted)phenylthio] acetamides (I); N,N-diethyl-2-[(4-substituted)phenylsulfinyl] acetamides (II); N,N-diethyl-2-[(4-substituted)phenylsulfonyl] acetamides (III); [4 = OMe, Me, H, Cl, Br and N02]; 2-[(4-substituted)phenylthio] cyclohexanones (IV); 2-[(4-substituted)phenylsulfonyl] cyclohexanones (V) and 2-[(4-substituted)phenylsulfinyl] cyclohexanones (VI), [4 = OMe, H and N02]. The conformational study was performed through the IR and 1H NMR spectroscopies, supported by theoretical calculations. The vCO infrared analysis for the series I, II and III in general matches well with the HF and B3LYP calculations which showed the occurrence of two stable conformations for compounds of series (I), being the gauche the most stable and the cis the second one. As for the substituent effect of series (I), the agreement between the experimental results with B3LYP is better than with HF. calculations. Considering the serries (II), there is only one stable conformation, the cis one, in gas and in solvents of different polarity. The series (III) showed the existence of three stable conformations, being the two gauche the most stable and the cis the least stable (both in the gas and in the low polarity solvent, CCl4). In the cyclohexanones series (IV, V and VI) the vCO infrared and 1H NMR analyses showed a preference for the axial conformation, in CCl4, changing the preference to equatorial one in CH3CN (CD3CN). The ab initio (HF) calculations reproduced the experimental preference, in CCl4, for the 2-[(4-substituted)phenylsulfonyl] cyclohexanones only. On the other hand, for these cyclohexanones (IV-VI) the B3LYP calculations improved the agreement with the experimental data. The NBO (Natural Bond Orbital) method confirmed that the gauche conformations of the series (I, II and III) are stabilized by: nN/π*C=O, πC=O/σ*C-S, σC-S/π*C=O, n(S)/π*C=O, π*C=O/σ*C-S, and for the series (IV, V and VI) by the interactions: πC=O/σ*C-S, σC-S/π*C=O, N(S)/π*C=O, π*C=O/σ*C-S. In contrast these NBO results also revealed the importance of the interactions nO(CO)/σ*C-S, nO(CO)/σ*S-O and nO(CO)/σ*C-H for the stabilization of the cis conformation. Additionally, the calculated charge analysis suggested the stabilization of both cis and gauche conformations due to Coulombic interactions. The inclusion of the solvent effect in the computations (Onsager and PCM methods) for some representative compounds of series (I-VI) facilitated the conformer attribution in solution.

ASSUNTO(S)

análise conformacional espectroscopia infravermelha conformational analysis infrared spectroscopy

Documentos Relacionados