Conserved Regions in the Epstein-Barr Virus Leader Protein Define Distinct Domains Required for Nuclear Localization and Transcriptional Cooperation with EBNA2

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Epstein-Barr virus (EBV) EBNA-LP is a latent protein whose function is not fully understood. Recent studies have shown that EBNA-LP may be an important EBNA2 cofactor by enhancing EBNA2 stimulation of the latency C and LMP-1 promoters. To further our understanding of EBNA-LP function, we have introduced a series of mutations into evolutionarily conserved regions and tested the mutant proteins for the ability to enhance EBNA2 stimulation of the latency C and LMP-1 promoters. Three conserved regions (CR1 to CR3) are located in the repeat domains that are essential for the EBNA2 cooperativity function. In addition, three serine residues are also well conserved in the repeat domains. Clustered alanine mutations were introduced into CR1 to CR3, and the conserved serines were also changed to alanine residues in an EBNA-LP with two repeats, which is the minimal protein able to cooperate with EBNA2. Mutations introduced into CR1a had no effect on EBNA-LP function, while mutations introduced into CR1b resulted in EBNA-LP with slightly decreased activity. Mutations in CR1c and CR2 resulted in proteins that no longer localized exclusively to the nucleus and also had no EBNA2 cooperation activity. Mutations introduced into conserved serines S5/71 resulted in proteins with slightly higher activity, while mutations introduced into conserved serines S35/101 or in CR3 (which contains S60/126) resulted in EBNA-LP proteins with substantially reduced activity. The potential karyophilic signals within EBNA-LP CR1c and CR2 were also examined by introducing oligonucleotides encoding these positively charged amino acid groupings into a cytoplasmic test protein, herpes simplex virus ΔIE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBNA-LP amino acids 43 and 50 (109 to 117 in the second W repeat) comprising CR2, while EBNA-LP amino acids 29 to 36 (91 to 98 in the second W repeat) were unable to function independently as a nuclear localization signal. However, a combination of amino acids 29 to 50 resulted in more efficient nuclear localization than with amino acids 43 to 50 alone. These results indicate that EBNA-LP has a bipartite nuclear localization signal and that efficient nuclear localization is essential for EBNA2 cooperativity function. Interestingly, EBNA-LP with only a single repeat localized exclusively to the cytoplasm, providing an explanation for why this isoform has no activity. In addition, two conserved serine residues which are distinct from nuclear import functions are important for EBNA2 cooperativity function.

Documentos Relacionados