Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Transglutaminase 2 (TG2) is a distinctive member of the family of Ca2+-dependent enzymes recognized mostly by their abilities to catalyze the posttranslational crosslinking of proteins. TG2 uniquely binds and hydrolyzes GTP; binding GTP inhibits its crosslinking activity but allows it to function in signal transduction (hence the Gh designation). The core domain of TG2 (residues 139–471, rat) comprises the papain-like catalytic triad and the GTP-binding domain (residues 159–173) and contains almost all of the conserved tryptophans of the protein. Examining point mutations at Trp positions 180, 241, 278, 332, and 337 showed that, upon binding 2′-(or 3′)-O-(N-methylanthraniloyl)GTP (mantGTP), the Phe-332 mutant was the weakest (35% less than wild type) in resonance energy transfer from the protein (λexc, max = 290 nm) to the mant fluorophore (λem = 444 nm) and had a reduced affinity for mantGTP. Trp-332, situated near the catalytic center and the nucleotide-binding area of TG2, may be part of the allosteric relay machinery that transmits negative effector signals from nucleotide binding to the active center of TG2. A most important observation was that, whereas no enzyme activity could be detected when Trp-241 was replaced with Ala or Gln, partial preservation of catalytic activity was seen with substitutions by Tyr > Phe > His. The results indicate that Trp-241 is essential for catalysis, possibly by stabilizing the transition states by H-bonding, quadrupole–ion, or van der Waals interactions. This contrasts with the evolutionarily related papain family of cysteine proteases, which uses Gln-19 (papain) for stabilizing the transition state.

Documentos Relacionados