Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida.

AUTOR(ES)
RESUMO

Mutant Pseudomonas putida strains that produce constitutive levels of the beta-ketoadipate uptake system are selected by the sequential transfer of cultures between mineral growth media supplemented with the noninducing growth substrate succinate and growth media containing beta-ketoadipate as the sole carbon and energy source. The mutant strains also produce constitutively three catabolic enzymes that give rise to beta-ketoadipate from the metabolic precursor beta-carboxy-cis, cis-muconate, and thus a single regulatory gene appears to govern the expression of the enzymes as well as the uptake system. The three enzymes that convert beta-carboxy-cis, cis-muconate to beta-ketoadipate are induced to higher levels when the orgainisms are grown with p-hydroxybenzoate (a compound that is catabolized via beta-ketoadipate); the beta-ketoadipate uptake system is partially repressed when the cells are grwon at the expense of p-hydroxybenzoate. The transferase that acts upon beta-ketoadipate remains inducible in the constitutive mutant strains. Thus a minimum of three biosynthetic controls must be exerted over the expression of the five genes. Since the regulatory mutation does not alter the expression of the gene for the transferase, the physiological target of the selection procedure appears to be mutant strains that produce the uptake system constitutively. Levels of the uptake system are higher in uninduced constitutive mutant cultures than in induced cultures of the wild type. Hence procedures analogous to the one we employed may be of general use in obtaining mutant strains that produce high levels of uptake systems.

Documentos Relacionados