Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles.

AUTOR(ES)
RESUMO

Defective interfering particles (DIP) are spontaneous deletion mutants of viruses that replicate at the expense of the parent virus. DIP have complex effects on the growth of viruses in vitro, including the establishment of persistent infection, cyclical variation in virus titer, eradication of replicating virus, and rapid evolution of the virus. We show here that a simple mathematical model, based only on experimental observations, can explain all of the major effects of DIP on the population dynamics of virus growth. The variation in virus titer caused by DIP has many features that are characteristic of deterministic chaos: it follows that the quantitative effects of DIP are intrinsically unpredictable beyond a short time. We conclude (i) that other factors, such as temperature-sensitive virus mutants or interferons, need not be invoked to explain the complex effects of DIP; and (ii) that dominantly interfering viruses should only be used with great caution for therapeutic purposes, since their effects are, in principle, unpredictable.

Documentos Relacionados