Cytotoxic T cells are elicited during acute infection of mice with lactate dehydrogenase-elevating virus but disappear during the chronic phase of infection.

AUTOR(ES)
RESUMO

Lactate dehydrogenase-elevating virus (LDV) invariably establishes a life-long viremic infection in mice, which is maintained by replication of LDV in a renewable subpopulation of macrophages and escape from all host immune responses. We now demonstrate that cytotoxic T lymphocytes (CTLs) that specifically lyse LDV-infected macrophages and 3T3 cells producing the nucleocapsid protein of LDV were elicited in Swiss, B10.A, and (Swiss x B10.A)F1 mice. To detect target cell lysis, splenocytes needed to be expanded by a 5-day in vitro culture in the presence of recombinant interleukin 2 and syngeneic LDV protein-expressing cells. In vitro culture resulted in the specific expansion of CD8+ cells which mediated the lysis of target cells in a major histocompatibility complex class I-restricted manner. When CTLs were added to macrophage cultures at 1 h after infection with LDV, the lysis of the infected macrophages by the CTLs started about 5 h postinfection (p.i.) and, at an effector cell/target cell ratio of 25:1, resulted in the lysis of all LDV-infected macrophages in a culture by about 7 h p.i. However, lysis of the LDV replication in a culture was not rapid enough to significantly suppress the LDV yield in the culture. LDV replication in mice was also little affected by the presence of CTLs which were induced by immunization with 3T3 cells expressing the LDV nucleocapsid protein. Furthermore, all CTL precursor cells in infected mice had disappeared by 30 days p.i. Loss of CTL precursor cells in infected mice probably reflected high-dose clonal exhaustion, since LDV infection of a mouse results in massive production of LDV in all tissues of the mouse, but especially in lymphoidal tissues, and accumulation of LDV in newly formed germinal centers. Furthermore, slow LDV replication continues in the thymus and other lymphoidal organs.

Documentos Relacionados