Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses.

AUTOR(ES)
RESUMO

The polyadenylation signal for the late mRNAs of simian virus 40 is known to have sequence elements located both upstream and downstream of the AAUAAA which affect efficiency of utilization of the signal. The upstream efficiency element has been previously characterized by using deletion mutations and transfection analyses. Those studies suggested that the upstream element lies between 13 and 48 nucleotides upstream of the AAUAAA. We have utilized in vitro cleavage and polyadenylation reactions to further define the upstream element. 32P-labeled substrate RNAs were prepared by in vitro transcription from wild-type templates as well as from mutant templates having deletions and linker substitutions in the upstream region. Analysis of these substrates defined the upstream region as sequences between 13 and 51 nucleotides upstream of the AAUAAA, in good agreement with the in vivo results. Within this region, three core elements with the consensus sequence AUUUGURA were identified and were specifically mutated by linker substitution. These core elements were found to contain the active components of the upstream efficiency element. Using substrates with both single and double linker substitution mutations of core elements, we observed that the core elements function in a distance-dependent manner. In mutants containing only one core element, the effect on efficiency increases as the distance between the element and the AAUAAA decreases. In addition, when core elements are present in multiple copies, the effect is additive. The core element consensus sequence, which bears homology to the Sm protein complex-binding site in human U1 RNA, is also found within the upstream elements of the ground squirrel hepatitis B and cauliflower mosaic virus polyadenylation signals (R. Russnak, Nucleic Acids Res. 19:6449-6456, 1991; H. Sanfacon, P. Brodmann, and T. Hohn, Genes Dev. 5:141-149, 1991), suggesting functional conservation of this element between mammals and plants.

Documentos Relacionados