Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes.

AUTOR(ES)
RESUMO

In situ hybridization with fluorescent oligonucleotides was used to detect and localize microorganisms in the granules of two lab-scale upflow anaerobic sludge blanket reactors that had been fed for several months with either sucrose or a mixture of volatile fatty acids. Sections of the granules were hybridized with 16S rRNA-targeted oligonucleotide probes for Bacteria, Archaea, specific phylogenetic groups of methanogens, and two syntrophic propionate-oxidizing strains, MPOB and KOPROP1. Cells of the syntrophic strain KOPROP1 were not detected in either type of sludge granules. Hybridizations of the sucrose-fed granules showed an outer layer of mainly bacterial microcolonies with different morphologies. More inwards of these granules, a layer of different methanogenic microcolonies mixed with large colonies of the syntrophic strain MPOB could be detected. The MPOB colonies were intertwined with hydrogen- or formate-consuming methanogens, indicating their syntrophic growth. The granules fed with volatile fatty acids showed an outer layer of mainly bacteria and then a thick layer of Methanosaeta-like methanogens mixed with a few bacteria and a layer of methanogens mixed with syntrophic MPOB microcolonies. The centers of both sludge types consisted of large cavities and methanogenic microcolonies. These results indicate a juxtapositioning of syntrophic bacteria and methanogens and provide additional evidence for a layered microbial architecture of anaerobic granular sludge.

Documentos Relacionados