DNA Synthesis Errors Associated with Double-Strand-Break Repair

AUTOR(ES)
RESUMO

Repair of a site-specific double-strand DNA break (DSB) resulted in increased reversion frequency for a nearby allele. Site-specific DSBs were introduced into the genome of Saccharomyces cerevisiae by the endonuclease encoded by the HO gene. Expression of the HO gene from a galactose-inducible promoter allowed efficient DNA cleavage at a single site in large populations of cells. To determine whether the DNA synthesis associated with repair of DSBs has a higher error rate than that associated with genome duplication, HO-induced DSBs were generated 0.3 kb from revertible alleles of trp1. The reversion rate of the trp1 alleles was ~100-fold higher among cells that had experienced an HO cut than among uninduced cells. The reverted allele was found predominantly on the chromosome that experienced the DNA cleavage.

Documentos Relacionados