DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation.

AUTOR(ES)
RESUMO

Site-directed mutagenesis has previously been used to construct Escherichia coli dnaK mutants encoding proteins that are altered at the site of in vitro phosphorylation (J. S. McCarty and G. C. Walker, Proc. Natl. Acad. Sci. USA 88:9513-9517, 1991). These mutants are unable to autophosphorylate and are severely defective in ATP hydrolysis. These mutant dnaK genes were placed under the control of the lac promoter and were found not to complement the deficiencies of a delta dnaK mutant in negative regulation of the heat shock response. A decrease in the expression of DnaK and DnaJ below their normal levels at 30 degrees C was found to result in increased expression of GroEL. The implications of these results for DnaK's role in the negative regulation of the heat shock response are discussed. Evidence is also presented indicating the existence of a 70-kDa protein present in a delta dnaK52 mutant that cross-reacts with antibodies raised against DnaK. Derivatives of the dnaK+ E. coli strain MC4100 expressing the mutant DnaK proteins filamented severely at temperatures equal to or greater than 34 degrees C. In the dnaK+ E. coli strain W3110, expression of these mutant proteins caused extreme filamentation even at 30 degrees C. Together with other observations, these results suggest that DnaK may play a direct role in the septation pathway, perhaps via an interaction with FtsZ. Although delta dnaK52 derivatives of strain MC4100 filament extensively, a level of underexpression of DnaK and DnaJ that results in increased expression of the other heat shock proteins did not result in filamentation. The delta dnaK52 allele could be transduced successfully, at temperatures of up to 45 degrees C, into strains carrying a plasmid expressing dnaK+ dnaJ+, although the yield of transductants decreased above 37 degrees C. In contrast, with a strain that did not carry a plasmid expressing dnaK+ dnaJ+, the yield of delta dnaK52 transductants decreased extremely sharply between 39 and 40 degrees C, suggesting that DnaK and DnaJ play one or more roles critical for growth at temperatures of 40 degrees C or greater.

Documentos Relacionados