Domain deletion in the extracellular portion of the EGF-receptor reduces ligand binding and impairs cell surface expression.

AUTOR(ES)
RESUMO

Cultured NIH-3T3 cells were transfected with cDNA constructs encoding human epidermal growth factor-receptor (EGF-R)* and two deletion mutants in the extracellular portion of the receptor molecule. One mutant is devoid of 124 amino-terminal amino acids, and the other lacks 76 residues. Mutant receptors were not delivered to the cell surface unless the transfected cells contained also endogenous EGF-Rs, suggesting that receptor interaction complements the mutation and allows surface display of mutant receptors. Immunoprecipitation experiments revealed an association between mutant and endogenous EGF-Rs when both proteins were expressed in the same cell. Hence, receptor-oligomers may exist in the plane of the membrane even in the absence of ligand binding, and oligomerization may play a role in normal trafficking of EGF-Rs to the cell surface. Mutant receptors retained partial ligand binding activity as 125I-labeled EGF was covalently cross-linked to both mutant receptors, and EGF stimulated, albeit weakly, their protein tyrosine kinase activity. Both mutant EGF-Rs bind EGF with a 10-fold lower affinity than that of the solubilized wild type EGF-R. These results provide further evidence that the region flanked by the two cysteine-rich domains plays a crucial role in defining ligand-binding specificity of EGF-R.

Documentos Relacionados