Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Tumor necrosis factor (TNF) α and mitogen-activated protein kinase/c-Jun N-terminal kinase (MAPK/JNK) pathways are both implicated in Alzheimer's disease (AD) pathogenesis. Increased expression of several members of the TNF pathway and JNK activation of c-Jun ultimately result in neuronal apoptosis. DENN/MADD, a multifunctional domain protein expressed in neurons, interacts with both the p55 TNF receptor (TNFR) type 1 and JNK3, placing it at a critical juncture in regulating signaling of neurodegeneration. We examined expression and interactions of the TNFR1 binding proteins, DENN/MADD, and TNFR-associated death domain (TRADD) protein in AD-affected tissues and cell cultures. We found reduced DENN/MADD and increased TRADD expression immunohistochemically in the hippocampus in areas of AD pathology compared to normal controls but little intraneuronal colocalization. In brain homogenates, DENN/MADD protein and mRNA expression was significantly reduced in AD compared to controls. Conversely, TRADD, TNFR1, and activated JNK were increased. Murine neuroblastoma and rat hippocampal cultures stressed with Aβ1–42 and the cortices of AD transgenic mice (Tg2576Swe) each showed decreased DENN/MADD expression and TRADD up-regulation in the mice, compared to controls. DENN/MADD antisense treatment of cultured rat hippocampal neurons reduced endogenous DENN/MADD and promoted neuronal cell death. DENN/MADD and TRADD competitively bound to TNFR1 when overexpressed in N2A cells, with DENN/MADD abrogating TNFR1 binding to TRADD. DENN/MADD may therefore be protective by inhibiting TRADD-induced apoptotic cell death. Reduction of DENN/MADD may affect long-term neuronal viability in AD by allowing TRADD mediation of TNFR1 signaling in response to oxidative or cytokine-promoted stresses.

Documentos Relacionados