Effect of DNA on poly (ADP-ribose) glycohydrolase and the degradation of histone H1-poly (ADP-ribose) complex from HeLa cell nuclei.

AUTOR(ES)
RESUMO

A poly(ADP-ribose)-H1 histone complex has been isolated from HeLa cell nuclei incubated with NAD. The rate of poly(ADP-ribose) glycohydrolase catalyzed hydrolysis of the polymer in the complex is only 1/9 that of free poly(ADP-ribose), indicating that the polymer is in a protected environment within the complex. Comparison of the rate of hydrolysis of free poly(ADP-ribose) in the presence or absence of H1 to that in the complex synthesized de novo indicates a specific mode of packaging of the complex. This is further indicated by the fact that alkaline dissociation of the complex followed by neutralization markedly exposes the associated poly(ADP-ribose) to the glycohydrolase. The complex also partially unfolds when it binds to DNA as evidenced by a 2-fold increase in the rate of glycolytic cleavage of poly(ADP-ribose). This effect of DNA is not due to a stimulation of the glycohydrolase per se since hydrolysis of free polymer by the enzyme is strongly inhibited by DNA, especially single-stranded DNA. Inhibition of glycohydrolase by DNA results from the binding of the enzyme to DNA and conditions which decrease this binding (increased ionic strength or addition of histone H1 which competes for DNA binding) relieve the DNA inhibition.

Documentos Relacionados