Effects of Combined Shear and Thermal Forces on Destruction of Microbacterium lacticum

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

A twin-screw extruder and a rotational rheometer were used to generate shear forces in concentrated gelatin inoculated with a heat-resistant isolate of a vegetative bacterial species, Microbacterium lacticum. Shear forces in the extruder were mainly controlled by varying the water feed rate. The water content of the extrudates changed between 19 and 45% (wet weight basis). Higher shear forces generated at low water contents and the calculated die wall shear stress correlated strongly with bacterial destruction. No surviving microorganisms could be detected at the highest wall shear stress of 409 kPa, giving log reduction of 5.3 (minimum detection level, 2 × 104 CFU/sample). The mean residence time of the microorganism in the extruder was 49 to 58 s, and the maximum temperature measured in the end of the die was 73°C. The D75°C of the microorganism in gelatin at 65% water content was 20 min. It is concluded that the physical forces generated in the reverse screw element and the extruder die rather than heat played a major part in cell destruction. In a rotational rheometer, after shearing of a mix of microorganisms with gelatin at 65% (wt/wt) moisture content for 4 min at a shear stress of 2.8 kPa and a temperature of 75°C, the number of surviving microorganisms in the sheared sample was 5.2 × 106 CFU/g of sample compared with 1.4 × 108 CFU/g of sample in the nonsheared control. The relative effectiveness of physical forces in the killing of bacteria and destruction of starch granules is discussed.

Documentos Relacionados